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ABSTRACT

Lead titanate ultra-fine powder is prepared by hydrothermal synthesis at
different temperatures (160°C - 190°C). Scanning Electron Microscopy is used
to study the microstructure of lead titanate powder. Capacitance and voltage
(C-V) characteristics of lead titanate ceramic capacitor is measured by
impendance analyzer. Lead titanate film is formed on Si — substrate by single
wafer spin processor. Morphology and film thickness are examined by SEM.
The I(V), C(V), C*(V) and P(E) characteristics are investigated for electrical

and ferroelectric properties.
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1.3 Nonvolatile Ferroelectric Random Access Memory

Ferroelectric random access memory (FERAM) has shown much potential in
replacing volatile dynamic random access memory (DRAM), the current choice
for computer technology. FERAM is nonvolatile, meaning that the charge
stored upon the bit capacitor is stable, negating the need for an energy-
intensive data refresh, Thus, for portable applications where energy is limited,
FeRAM s attracting significant interest. Dynamic random access memory
(DRAM) is commonly used in most of today’s computer technology. However,
it is volatile, meaning that it must have access to a power source at all times,
and any data stored upon it must constantly be refreshed in order to maintain it.
As ferroelectric random access memory (FERAM) is nonvolatile, it does not
need constant access to a power source, giving it an advantage over DRAM in
terms of power conservation. Fatigue, which is one of the reliability issues
encountered with FeRAM will be studied in the ferroelectric lead titanate
PbTiO; thin films in this work. Fatigue is defined as the loss of switchable
polarization with repeated switching. The switchable polarization is derived
from the electric field-driven movement within each unit cell of the body-
centered cation either up of down relative to the oxygen anions. The
polarization charge translates to a one or zero stored on a computer memory’s
capacitor, which is made of a ferroelectric material sandwiched between two

metal electrodes. [6]

1.4 Hydrothermal Synthesis

Hydrothermal synthesis includes the various techniques of crystallizing
substances from high-temperature aqueous solution at high vapor pressures,
also termed "hydrothermal method". It can be defined as a method of synthesis
of single crystals, which depends on the solubility of minerals in hot water
under high pressure. The temperature can be elevated above the boiling point
of the water, reaching the pressure of vapor saturation [7]. One of the main
advantages of hydrothermal synthesis is the ability to control the grain size by
varying the synthesis temperature and concentrating of hydrothermal bath [8].



CHAPTER I
INTRODUCTION

1.1 Ferroelectric Materials

Ferroelectric materials are very often dielectric. For most applications of
ferroelectric materials the dielectric constant and dielectric loss are important
practical parameters [1]. Ferroelectric materials, in particular ceramics, have
been commercially important to the electronics industry for more than 50 years
[2]. Ferroelectric materials can be used in different ways in memory designs.
The first use is a thin film of ferroelectric in a capacitor as a non-volatile
storage element using the hysteresis property of polarization versus voltage as

the means of storing data [3].

All ferroelectric materials have a transition temperature called the Curie (T¢).
At a temperature T>T, the crystal does not exhibit ferroelectricity, while for
T>T. it is ferroelectric. On decreasing the temperature through the Curie point,
a ferroelectric crystal undergoes a phase transition form a non-ferroelectric
phase a ferroelectric phase. If there are more than one ferroelectric phases, the
temperature at which the crystal transforms from one ferroelectric phase to

another is called the transition temperature [4].

1.2 Ferroelectric Capacitor Memory Devices

The inherent memory derived from the spontaneous polarization of
ferroelectric materials has already been used in ferroelectric memories based on
the Dynamic Random Access Memory (DRAM) one transistor/one capacitor
(IT/1C) design. All of the exciting developments in FRAM memory
technology are finding their way into a host of applications that people use
every day Ferroelectric thin films have attracted much attention for potential
applications such as high dielectric constant capacitors, infrared detectors,
piezoelectric transducers, optical modulators, optical waveguides, nonvolatile

memory chips and capacitors for dynamic random access memory (DRAM)[5].



CHAPTER 11
EXPERIMENTAL PROCEDURE

2.1 Preparation of PbTiO, Powder

By using the hydrothermal versatile technique, Lead Titanate (PbTiO,)
powders were produced. These powders were grown by reacting 4 g of lead (II)
nitrate (Pb(NO;); ), 1 g of titanium dioxide (TiO;), 1.5 mol of potassium
hydroxide (KOH) and 20 ml of deionized water (DIW) in Teflon -lined steel-
bomb at different treatment time at 160°C, 170°C, 180°C and 190°C. The
starting reagents and experimental accessories were shown in Fig 2.1 (a-d).
Firstly KOH, (Pb (NOs),), (TiO,) and (DIW) were mixed in beaker as shown in
Fig 2.2 (a). And then, stir with glass rod as shown in Fig 2.2 (b). After mixing,
it was poured into the Teflon-lined stainless steel-bomb as shown in Fig 2.2 (¢).
The mixture was oven-dried at 160°C for 04:30h, 170°C for 3:30h, 180°C for
3:00h and 190°C for 02:30h in the hydrothermal bath as shown in Fig 2.2 (d). It
was found that all the resulting samples have the same colour (dull yellow) in
accordance with the same bath morality as shown in Fig 2.3 (a). It might be
assumed that, all the samples have the same colour due to the constant bath
morality although the treatment temperature were changed.

2.2 Substrate Preparation

The substrates Si (100) were cleaned with HF:H,0 (1:5) for 15 minutes and
dried at room temperature to remove native oxide. Then the substrates were
immersed in acetone for 10 minutes and dried in four times. After that, it was
immersed in methanol for 5 minutes and dried to remove impurities. Finally,
they were cleaned with distilled water for 5 minutes and dried, at room



Ferroelectricity is a phenomenon that is created when materials with qualities
that make them ideal for ferroelectric current to develop have been placed in
close proximity exhibit. The resulting creation of electrical flow is referred to
as the creation of a dipole moment. Materials that possess ferroelectric
properties are physically attached to a lattice grid that can be used as a
conductor. Other common devices used in such thing as heat sensors and
motion detectors that are commonly used in fire safety and security systems.
Even the automobile industry benefits from employing the physics of
ferroelectricity [9). Lead (II) nitrate (Pb(NO;), ) is an inorganic compound, it
commonly occurs as a colourless crystal or white powder and unlike most other
Lead (I1) salts . is soluble in water [10]. Titanium dioxide (TiO,), also know as
titanium (IV) oxide or titania. is the naturally occurring oxide of titanium. It is
widely used to provide whiteness and opacity and also used as a semiconductor
(11). Potassium hydroxide (KOH) is highly basic, forming strongly alkali
solutions in water and other polar solvents and see also sodium hydroxide. Its
dissolution in water is strongly exothermic, leading to a temperature rise,
sometimes up to boiling point. KOH is a desiccant. In the laboratory it is
particularly useful for drying basic solvents [12]. Lead Titanate (PbTiO;) is a
very attractive material for the use in a wide variety of field, including
ultrasonic  sensors, infrared detectors, electro-optic modulators, and
ferroelectric random access memories [13]. Teflon is known for their excellent
chemical resistance. superior electrical properties, and high service
temperatures. Stainless steel is a very versatile material. It can literally be used
for years and remain stainless [14-15]. In this process, hydrothermal synthesis
was demonstrated for the formation of perovskite phase PbTiO; powders. For

this reaction Teflon-lined stainless steel bomb was used as a container.



2.3 Preparation of PbTiO; Film

The PbTiO; powder and ethanol were mixed and stirred by magnetic stirrer to
get precursor solution as showed in Fig 2.3 (b). And then Precursor solution
was deposited on the substrate by spin coating technique as shown in 2.3 (c-d).
Later, layer was dried at room temperature. Then, the substrates were annealed
at 500°C to 650°C for 1 hr by conventional annealing process. Finally
Cu/PbTiOy/Si structure was formed and given as Fig 2.3 (e). The procedure for
preparation of PbTiO; films by spin-coating technique was shown in Fig 2.4.



Fig 2.1 (b) Titanium Dioxide



Fig 2.1 (a)  Lead (1D Niteate



Fig 2.1 (¢) Potassium Hydroxide



Fig 2.2 (a) Mixing the Starting Reagents
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Fig 2.1 (d) Teflon - lined Stainless Steel Bomb



Fig 2.2 (b) Stir with Glass Rod
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Fig 2.2 (b) Stir with Glass Rod
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Fig 2.2 (b) Stir with Glass Rod



Fig 2.2 (¢) Pour Mix Solution into Stainless Steel Bomb



Fig 2.3 (a) Same Colour of PbTiO; Powders
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Fig 2.2 (d) Hydrothermal Bath



Fig 2.3(b) The Magnetic Stirrer

15



Fig 2.3 (d) Single Wafer Spin Processor

17



Lid

Silicon Substrate

Oil free Moto Display Unit

Fragment Adaptor

Nitrogen

Fig 2.3(¢c)  The Photograph of Spin Coating System of the Spin
Processor (MODEL WS-400BZ- 6N PP/LITE)
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The lattice strain / lattice microstrain (c/a) was also shown in Table 3.2.

Table 3.2 Lattice Strain / Tetragonality of both Values

Annealing Tetragonality c/a
Temperature (°C) Standard Observed
160 1.082283 1.062964
170 1.082283 1.0573457
180 1.082283 1.0604743
190 1.082283 1.0582804

3.1.2 Crystallite Size (Nano-Particle size)

The crystallite size was evaluated by eqn:

Crystallite size = 0899 XAAT e (4.2)
FWHM(rad) xcosfg

Where A = 1.54056 A for Cu k, relation
FWHM = full width at half maximum value for (101) diffracted peak
Op = value of 0 for (101) diffracted peak

The crystallite size (nano-particle size) was collected and listed in Table 3.3.

Table 3.3 Crystallite Size at Different Annealing Temperatures

Annealing Temperature (°C) Crystallite Size (nm)
160 32.6
170 344
180 28.6
190 443

3.2 Microstructural Study by SEM

The morphologies of the resulting hydrothermal PbTiO; powders were studied

by Scanning Electron Microscope (SEM). SEM images for PbTiO; powders at
160°C, 170°C, 180°C and 190°C were described at Fig 3.2 (a-d). It was found
that randomly oriented samples on SEM images were formed. All images

21



showed the fairly dense structures with fine grains and without cracks. The
grain sizes were measured to be 32.08um, 33.00um, 35.00pm, and 33.75pum for
respective powders. The grain orientation was also lefi-shifted. In addition it
was well know that the hydrothermal synthesized PbTiO; powder was quite
feasible for ceramic growth technology. From SEM results, it was seemed that
the PbTiO; powder was fine and successfully grown. The best powder was

appared at reaction temperature of 190°C.

3.3  C-V Characteristics of Lead Titanate Ceramic Capacitor

Fig 3.3 (a-d) indicated the capacitance and voltage characteristics of ceramic
capacitor. Measurement was performed at 100 kHz and dc bias voltage cycled
at £5V. The C-V curve gave the nonvolatile behaviour and also indicated the
memory function. The hysteresis gap showed the width of memory window

and it was measured to be 0.42 V, 0.41 V, 0.63, 0.64 V, respectively.

3.4 Morphology and Film Thickness by SEM
Fig 3.4 (a-d) showed the SEM image (planner view) of PbTiO; film. The grain

was uniformly distributed on SEM image for all samples. The grain size was
measure by well-know bar code system. They were 2.2 um, 1.65 pm,
1.05 um and 0.8 um for respective films. From SEM Photomicrograph, it was
obvious that the altering solution chemistry was quite acceptable and
appropriate for growth mechanism. Fig 3.4 (e-h) showed the SEM image
(cross-sectional view) of PbTiO; film. The film thickness were found to be
27.8 um, 28.6 um, 23.7 pm and 24.5 um respectively.

3.5 [-V Characteristics of PbTiO; Films
Electrical properties of PbTiO; films were interpretal by means of -V
characteristics. Fig 3.5 (a) showed the I-V characteristics of PbTiO, films at

different process temperatures. This curve showed the rectification effect
because the forward and reverse regions were asymmetric. Inl-V variation was



CHAPTER III
RESULTS AND DISCUSSION

3.1 Phase Formation of PbTiO; Powder

Lead titanate (PbTiO;) powders were thus obtained and examined their
structural properties by X-ray Diffraction (XRD) technique. Fig 3.1 (a-d)
indicated the XRD profiles of PbTiO; powders at different annealing
temperatures. All observed XRD profiles were absolutely matched with those
of standard PbTiO; peak with tetragonal symmetry. Thus PbTiO; specimen was
successfully formed at given annealing temperatures. In this study the
annealing temperature was limited from 160°C to 190°C. (101) diffracted peak
was found to be rather sharp over others for all XRD profiles. However the
(101) peak was appeared with co-existing peak named (110) reflection for all
XRD plot except at 190°C. The intensity of XRD profile was largest for
PbTiO; powder at 190°C while the smallest value was caused at 160°C.

3.1.1 Lattice Parameters, Lattice Distortion and Cell Volume
The lattice parameters of PbTiO; powder for both standard and observed values
at different annealing temperatures were listed in Table 3.1.

Table 3.1 Lattice Parameters for both Standard and Observed Values

Annealing Lattice Parameters
Temperature a(A) c(A)
(°C) Standard | Observed | Standard Observed
160 3.889 3.8927 4.209 4.1378
170 3.889 3.9009 4.209 4.1246
180 3.889 3.8876 4.209 4.1227
190 3.889 3.8881 4.209 4.1147
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film (at 500°C - 650°C) were examined by Quard Tech 1730 LCR Digibidge
meter (Digital Impedence Analyzer) and DT 9208 digital multimeter as a
voltmeter.
The C2 - V characteristics of Lead titanate films were shown in Fig 3.7 (a-d).
All C%- V graphs were linear relationships with different slopes. This fact gave
the uniform and homogeneous Lead titanate specimen on substrate. From the
graph, it was observed that the capacitance became saturating and
independence of the bias voltage in excess 5 V because these depletive region
have reached the end of n-Zone. At the point, the capacitance was of the order
of 10" (F)2. By extrapolating the linear graph, built - in — potential (Vi) was
obtained. The value of Vy; lied in the positive region. This fact indicated the P-
type conductivity of Si substrate. It also shown these n-side was at the higher
potential than p-side. Acceptor concentration (N,), and repletion layer with (W)
were measured.

The built-in-potential, acceptor concentration and depletion layer width
were listed in Table 3.6.
Table 3.6 The Relationship of Reaction Temperature and N,, W and Vy,

Reactlon N, (em”) W (cm) Vi (V)
Temperature (°C)

500 1.31x10% 1.04x10” 3.50x10”

550 6.68x10% 9.75x10°" 3.75x10"

600 8.24x107 1.00x10” 3.38x10"

650 8.24x10° 1.00x10” 3.36x107

3.8 P-E Hysteresis Loop Measurement

Thermal hysteresis loop was measured by Sawyer-Tower circuit. The observed
_hysteresis loops were given as Fig 3.8 (a-d). All hysteresis loops observed in
present investigation were non-saturating as could be seen in figure. Further
increase of electric field in the film caused its breakdown. Especially, the loop
formed at500:C {Fig 3.8 (a)] was examined to be round-ended. All loops were
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non-linear and tended to ferroclectric behaviour. It was clearly found that the
fabricated PbTiO; film exhibited the ferroelectric properties. The three
hysteresis parameters such as spontaneous polarization density (p,), remanent
polarization density (P,) and coercive field (E.) were measured. The reference
capacitance and resistance used in this study were 1.4x10™'F and 330kQ.

From the view point of digital electronic, the fabricated PbTiO; films can be
used as a prototype device of non-volatile memory application. Fig 3.9 (a)
showed the change in 2P, (Polarization reversal) as a function of process
temperatures. The largest value was found at 600°C. Fig 3.9 (b) indicated the
variation of P, and process temperatures. The nature of P,-T was examined to
be same as that of 2P.-T. The variation of E, with respect to process
temperature was shown in Fig 3.9 (c). These value were also described at
Table 3.7.



shown in Fig 3.5 (b). The diode quality factor (ideality factor)(n) and zero-bias
barrier height (®y,,) were described in Table 3.4.

Table 3.4 Some Diode Parameters of PbTiO; Films at Different Process

Temperatures
Temp('C) Dy, (eV) n
500 0.516740 0.9850
550 0.529851 1.6117
600 0.527653 1.2654
650 0.530886 1.2837

3.6 C-V Characteristics of PbTiO; Films (Nonvolatile Memory Nature)

To examine the ferroelectric memory nature of hydrothermal synthesized
PbTiO; film, capacitance and voltage characteristics was measured at 100 kHz.
The double sweeping voltage was applied from -5V to +5V. Fig 3.6 ( a-d) gave
the C-V characteristics of PbTiO; films at different process temperatures. The
C-V curve exhibited the hysteresis nature as well as memory behaviour.
Table 3.5 described the change in memory window with respect to process

temperature.

Table 3.5 Width of Memory Window at Different Process Temperatures

Temp('C) Memory window (V)
500 0.60
550 0.53
600 0.26
650 0.27

3.7 C2.V Characteristics of Lead Titanate Film

Charge conduction mechanism (1/C%-V) of PbTiOy/p-Si at process temperature
were studied. C-V Characteristics of hydrothermal derived PbTiO; ceramic

23
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Fig 3.1 (c) XRD Profile for PbTiO; Powder at 180°C
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Fig 3.1 (d) XRD Profile for PbTiO; Powder at 190°C
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Fig 3.2 (b) SEM Image for PbTiO; Powder at 170°C



Fig 3.2
(a) SEM Image for PbTiO; Powder at 160°C
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Fig 3.2 (c) SEM Image for PbTiO; Powder at 180°C
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Fig 3.2 (d) SEM Image for PhTiO; Powder at 190°C
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Fig 3.4 (a) SEM Image for PbTiO; Film at 500°C
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Fig 3.4 (b) SEM Image for PbTiO; Film at 550°C
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Fig 3.4 (d) SEM Image for PbTiO; Film at 650°C
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Fig 3.4 (c) SEM Image for PbTiO; Film at 600°C
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Fig 3.4 (¢) Film Thickness of SEM Image for PbTiO; Film at 500°C
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Fig 3.4 (h)  Film Thickness of SEM Image for PHTiC )y Film at 650°C
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CHAPTER IV
CONCLUSION

Hydrothermal synthesi: e y
at difterent batznt::lsp;:::::sd \::hnt::r:?wdjr’ [t el fomes
crystallite size was formed for the PbT'O&OH(l . mm"“—"-o Thc :Wna”csl value of
190°C exhibited the maxit R S
| num degree of crystallite size. As a result of PbTiO;
POWdCr. anal.}‘SlS by SEM, the grain size was in the micrometer range. The
crystallite size and grain size were much different. This fact give the
polycrystallite nature of PbTiO; specimen. C-V characteristics of PbTiO; ceramic
capacitors showed the ferroelectricity and nonvolatity of lead titanate. Also the
grain morphology (film morphology) of PbTiO; film indicated that the PbTiO;
film was obviously formed on p-Si (100) substrate at given process temperatures.
According to the film thickness value, all films were said to be " thin film". From
I-V characteristics of PbTiO; films, typical p-n junction contact was formed. All
zero-bias barrier heights were examined to be less than unity. All ideality factors
were observed to be greater than unity, except the film at 500°C. There was no
leakage current in the PbTiO; film at S00°C. Thus, it was formed on p-Si (100)
substrate with good diode nature. From C-V characteristics of PbTiO; film at

different process temperatures, hysteresis gap was clearly appeared and showed
he standard of the special requirements for the

the memory function. It met ¢
ry capacitor. C2-V linear relationship showed

development of cost effective memo

the homogeneity of PbTiO; film. All built-in-voltages were observed to be

negative value and it conformed the p-type conductivity of silicon substrate. Well-

defined hysteresis loop conformed the ferroelectric nature and nonvolatile memory

behaviour of PbTiO; film. The lower value of spontaneous polarization density
be explained on the basis of

d that the PbTiO; film
gent. Thus, the

(P;) and measurement polarization density (P,) could
small dipole moment in these temperatures. This fact reveale
exhibited the low relative dielectric constant and high loss tan
results obtained from this research are quite credible, appropriate, feasible and
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applicable in use for single capacitor in nonvolatile ferroelectric random access

memory (NVFRAM).
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